Parabolic Bundles on Algebraic Surfaces I- the Donaldson–uhlenbeck Compactification
نویسنده
چکیده
The aim of this paper is to construct the parabolic version of the Donaldson–Uhlenbeck compactification for the moduli space of parabolic stable bundles on an algenraic surface with parabolic structures along a divisor with normal crossing singularities. We prove the non–emptiness of the moduli space of parabolic stable bundles of rank 2 and also prove the existence of components with smooth points.
منابع مشابه
Principal Bundles on Projective Varieties and the Donaldson-uhlenbeck Compactification
Let H be a semisimple algebraic group. We prove the semistable reduction theorem for μ–semistable principal H–bundles over a smooth projective variety X defined over the field C. When X is a smooth projective surface and H is simple, we construct the algebro– geometric Donaldson–Uhlenbeck compactification of the moduli space of μ–semistable principal H–bundles with fixed characteristic classes ...
متن کاملA Note on Moduli of Vector Bundles on Rational Surfaces
Let (X,H) be a pair of a smooth rational surface X and an ample divisor H on X . Assume that (KX , H) < 0. Let MH(r, c1, χ) be the moduli space of semi-stable sheaves E of rk(E) = r, c1(E) = c1 and χ(E) = χ. To consider relations between moduli spaces of different invariants is an interesting problem. If (c1, H) = 0 and χ ≤ 0, then Maruyama [Ma2], [Ma3] studied such relations and constructed a ...
متن کاملLectures on perverse sheaves on instanton moduli spaces
Let G be an almost simple simply-connected algebraic group over C with the Lie algebra g. Let h be a Cartan subalgebra of g. We assume G is of type ADE, as there arise technical issues for type BCFG. (We will remark them at relevant places. See footnotes 5, 12.) At some points, particularly in this introduction, we want to include the case G = GL(r). We will not make clear distinction between t...
متن کاملHarmonic bundles on quasi-compact Kähler manifolds
On Kähler manifolds, there exist deep relationships between holomorphic and harmonic objects, between algebraic data and analytic variational principles. For example, through the work of Narasimhan-Seshadri [NS], Donaldson [D1, D2, D3] and Uhlenbeck-Yau [UY] we know that an irreducible holomorphic bundle on a compact Kähler manifold X possesses a Hermite-Einstein (H-E) metric if and only if it ...
متن کاملFlat Bundles on Affine Manifolds
We review some recent results in the theory of affine manifolds and bundles on them. Donaldson–Uhlenbeck–Yau type correspondences for flat vector bundles and principal bundles are shown. We also consider flat Higgs bundles and flat pairs on affine manifolds. A bijective correspondence between polystable flat Higgs bundles and solutions of the Yang–Mills–Higgs equation in the context of affine m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006